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ABSTRACT
Motivation: Obtaining high quality alignments of divergent homolo-
gous sequences for cross-species sequence comparison remains a
challenge.
Results: We propose a novel pairwise sequence alignment algo-
rithm, ACANA (ACcurate ANchoring Alignment), for aligning biologi-
cal sequences at both local and global levels. Like many fast heuristic
methods, ACANA uses an anchoring strategy. However, unlike others,
ACANA uses a Smith-Waterman-like dynamic programming algorithm
to recursively identify near optimal regions as anchors for a global
alignment. Performance evaluations using a simulated benchmark
dataset and real promoter sequences suggest that ACANA is accu-
rate and consistent, especially for divergent sequences. Specifically,
we use a simulated benchmark dataset to show that ACANA has the
highest sensitivity to align constrained functional sites compared to
BLASTZ, CHAOS and DIALIGN for local alignment and compared
to AVID, ClustalW, DIALIGN, and LAGAN for global alignment. App-
lied to 6,007 pairs of human-mouse orthologous promoter sequences,
ACANA identified the largest number of conserved regions (defined
as over 70% identity over 100 bp) compared to AVID, ClustalW, DIA-
LIGN and LAGAN. In addition, the average length of conserved region
identified by ACANA was the longest. Thus, we suggest that ACANA
is a useful tool for identifying functional elements in cross-species
sequence analysis, such as predicting transcription factor binding
sites in non-coding DNA.
Availability: ACANA software and test sequence data are publicly
available at http://raga.statgen.ncsu.edu/ACANA.
Supplementary information: Supplementary materials are available
at Bioinformatics online.
Contact: li3@niehs.nih.gov

1 INTRODUCTION
Discovering the function of genes and revealing gene regulation
networks are important tasks in decoding genome sequences. Con-
served protein domains and functional regulatory sites can provide
valuable information for inferring gene function and regulatory con-
trols. Comparative analysis of homologous sequences from related
species is an efficient way to reveal such functional domains or
regulatory elements (e.g., Xieet al., 2005). With the increasing
availability of genome sequences from related species, such cross-
species comparative analysis has become more powerful and widely
used. The success of a comparative analysis is largely dependent,
however, on the accuracy of alignment.
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The standard pairwise alignment algorithms can be traced back to
the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970)
for global alignment, and the Smith-Waterman algorithm (Smith and
Waterman, 1981) for local alignment. Both the Needleman-Wunsch
and the Smith-Waterman algorithms use dynamic programming
techniques to find the optimal global and local alignments, respec-
tively. To improve alignment quality, Smith and Waterman (1981)
introduced the affine gap cost model for dynamic programming
algorithms, which allows one to assign a more flexible penalty for
a long insertion/deletion hence possibly makes alignments more
biologically meaningful. Gotoh (1982) showed that the affine gap
cost model can be implemented with equivalent computational
complexity to the constant gap cost model. For short and highly
similar sequences, these standard deterministic algorithms work
well. Because it is very difficult to assign biologically meaning-
ful gap penalties, these standard algorithms may not be reliable in
aligning divergent homologous sequences with long insertions or
deletions. A large gap penalty could force mismatched alignments
instead of inserting appropriate gap segments, whereas a small
gap penalty could result in spurious matching of unrelated regions.
Furthermore, the computation time used by either the Needleman-
Wunsch or the Smith-Waterman algorithm is proportional to the
product of the lengths of two sequences and can increase by a
factor of about three when the affine gap cost model is applied.
Hence, many heuristic algorithms (Batzoglouet al., 2000; Mor-
gensternet al., 1998; Morgenstern, 1999; Tatusova and Madden,
1999; Brudnoet al., 2003b) have been developed to increase ali-
gnment speed and/or make alignment more biologically meaningful.
BLAST/WU-BLAST (Altschul et al., 1990, 1997), PatternHunter
(Ma et al., 2002), BLAT (Kent, 2002), and BLASTZ (Schwartz
et al., 2003) are index-based fast local search tools for finding
homologous segments. WABA (Kent and Zahler, 2000), MUM-
mer (Delcheret al., 2002), AVID (Brayet al., 2003), and LAGAN
(Brudnoet al., 2003b) are index-based fast global alignment tools,
most of which employ tree-structures to efficiently identify highly
identical alignment seeds and use chaining strategies to form ancho-
ring regions for a global alignment. We refer readers to the review
by Batzoglou (2005) for more details. These fast tools overcome
the problems of insufficient speed and memory and the intolerance
of long gaps by the standard dynamic programming algorithm, and
thus, they can be used to align genome-size sequences with good
accuracy. These tools are widely used and highly effective.

In this paper, we present ACANA (ACcurate ANchoring
Alignment), an alternative alignment tool for aligning either DNA
or protein sequences. Like many fast heuristic algorithms, ACANA
uses the anchoring strategy. However, instead of chaining or exten-
ding exactly-matched words as anchoring regions, ACANA uses
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Fig. 1. Illustration of the simplified ACANA algorithm. (a) Compute
score of each cell in the matrix by a dynamic programming algorithm, and
select the best anchor from local alignments with scores above a certain
threshold. (b) Fixing the anchor, recursively select the best anchors in its
up-left and down-right regions. (c) All selected anchors are fixed for the
global alignment. (d) Finding optimal global alignment for each region bet-
ween the fixed anchors by Gotoh improved Needleman-Wunsch algorithm,
and connecting them with the fixed anchors to generate the global alignment.

the dynamic programming algorithm recursively to identify the near
optimal local alignments as anchoring regions. This recursive ope-
ration is guaranteed to find near optimal local alignments as it
employs the Smith-Waterman algorithm, but it avoids the problem
of intolerance of long gaps in sequences.

2 ALGORITHM
ACANA, like many fast alignment tools such as MUMmer, AVID,
and LAGAN, uses the anchoring approach for global alignment.
However, unlike others, ACANA uses a new strategy for selec-
ting anchoring regions. An anchor-based alignment algorithm has
advantages in reducing computation time and/or improving quality
of global alignment. ACANA weights local similarity and regio-
nal conservation and chooses the best set of anchoring regions from
which to construct a global alignment. The simplified ACANA ali-
gnment algorithm is illustrated in Figure 1. The four essential parts
of ACANA algorithm are: a heuristic dynamic programming algo-
rithm primarily based on the Smith-Waterman algorithm for calcula-
ting matrices and tracing local alignment paths using the affine gap
cost model; a hash-based algorithm for identifying non-overlapping
local alignments in a single pass of calculation of matrices; a method
of selecting anchoring regions from local alignments; an algorithm
for avoiding unnecessary calculation in recursively searching for the
best anchoring regions. Details of these components are described
in Implementation. For a pair of sequences, ACANA outputs the
non-overlapping local alignments as well as a global alignment, so
it is both a local and global alignment tool.

3 IMPLEMENTATION
Calculating Alignment Matrices To find the best local alignment
from a pair of sequencesA andB of lengthm andn, respectively,
the Gotoh improved Smith-Waterman algorithm (see Supplement)
needs to fill three matricesF , G, andH of sizem × n instead of

a single matrix by the standard Smith-Waterman algorithm. So it is
more computational expensive than the standard Smith-Waterman
algorithm. Some improvements have been proposed to increase
computational speed (Green, 1993; Trelleset al., 1998; Rognes and
Seeberg, 2000), for example, by reducing unnecessary calculations
in matricesF andG (Green, 1993). The essential functions ofF
andG are to store information to decide whether a newly inserted
gap extends an existing gap or opens a new gap. That is,F and
G are crucial only in locations where insertions or deletions occur.
However, significant local alignments generally have few insertions
and deletions, so that most elements ofF andG are not needed.
Our algorithm replacesF andG by a single path-tracing matrixI,
andH by a score matrixS. Instead of recording alignment scores,
matrixI keeps the path of local alignments. Since the score of a cell
in S can only come from three previous cells, two bits of memory
is enough for a cell ofI to record three possible sources, which can
save computation time and space.

ACANA fills S andI by a dynamic programming algorithm with
the following recursion relations.

1. IF i = 0, setSi,j = 0, Ii,j = 0, wherej = 0...n

2. IF 1 ≤ i ≤ m, calculateSi,j andIi,j by

Si,j = max

8>>>>>><
>>>>>>:

c0 = max(0, Si−1,j−1 + score(Ai, Bj))

c1 = Si,j−1 +

(
ge if (Ii,j−1 = 1)

go otherwise

c2 = Si−1,j +

(
ge if (Ii−1,j = 2)

go otherwise

Ii,j =

8><
>:

1 if (Si,j = c1)

2 if (Si,j = c2)

0 otherwise

Wherego andge are gap opening and extension penalties, respec-
tively; score(Ai, Bj) is the score from a substitution scoring matrix
where baseAi is matched withBj .

ACANA can efficiently track all non-overlapping locally optimal
alignments during alignment matrix calculation. The first algorithm
for such alignments was introduced by Waterman and Eggert (1987)
based on partial recalculation of the alignment matrixH. Barton
(1993) extended the algorithm by enabling it to locate all locally
optimal alignments in single pass calculation of the matrixH. Bar-
ton’s (1993) improvement is based on the observation that among
all possible paths through each cellHi,j , only one gives the optimal
alignment. ACANA algorithm is based on the similar observation
that there is only one optimal alignment (provided no overlap) from
a common start position in the matrixS. When filling the matrixS,
ACANA stores the start position of the path passing the current cell
using an array of sizemin(m, n) + 1. In the same time, ACANA
employs a hash structure, in which the keys are start positions and
the values are stop positions, to dynamically track the stop positions
of non-overlapping optimal local alignments. The number of entries
in the hash structure is also dynamically updated as new local ali-
gnments of scores above a minimum threshold added and those old
alignments of scores decaying to zero before reaching a (dynamic)
cutoff threshold are removed. In this way, ACANA is able to identify
all such locally optimal alignments of scores above a cutoff thres-
hold in a single pass of calculation of alignment matrices. ACANA
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uses a new algorithm for tracing the alignment path that is detailed
in the Supplement.

Anchor Selection Once a set of significant local alignments in
a region has been identified, ACANA selects the best one as the
anchor for the region. ACANA’s approach is, however, fundamen-
tally different from many existing approaches in which the local
alignment with the highest score or the smallest p-value is taken
as the best. While existing approaches are valid and efficient, sce-
narios can arise, especially with two sequences of low to moderate
similarity, when the score of a short alignment is larger than that
of a much longer alignment that may be biologically more relevant.
Thus, it might be a good idea to consider both alignment score and
length when choosing an anchor. Herein we propose a new weighted
scoreω, referred to as a “biological relevance score”, for selecting
the best local alignment from a set of significant local alignments as
an anchor.

ω =

(
v log u if u ≥ 1 andv ≥ 5

0 otherwise

whereu andv are the alignment score and length (without coun-
ting gaps) of a local alignment, respectively. We believe that length
is better than alignment score in assessing biological relevance.
So, we choose the length as the main factor ofω, which is then
weighted by the logarithm of the local alignment score. Choosing
the logarithm of alignment score reflects an idea that for the same
amount of increase in score, “biological relevance” should incre-
ase more sharply for alignments with small alignment scores than
for those with large scores. Use ofω could help ACANA to distin-
guish significant local alignments from random matched segments
and may be important when local alignments are in highly divergent
homologous sequences.

ACANA ranks local alignments according to theirω values. If the
value ofω for the top ranked local alignment exceeds a certain thres-
hold, ACANA retains, as anchor candidates, all local alignments
whoseω values are within 90% percent of that of the top ranked can-
didate; otherwise no anchor is selected. If there are several anchor
candidates, ACANA further calculates a regional weight score for
each byGa = ua +

P
b ub, whereua is the alignment score of the

anchor candidatea, and eachb is a non-overlapping local alignment
that does not intersect witha. Ga is the regional weight score of the
anchor candidatea. The candidate with the highest regional weight
score is chosen as an anchor for global alignment.

Once the anchor for a region has been selected, ACANA searches
all significant local alignments on both sides of the anchor for two
new anchors, one for each side. Suppose that the first anchor starts at
(a, b) and ends at(c, d) in matrixS, wherea andc are the start and
stop positions of the anchor in sequenceA, and converselyb andd
for sequenceB. ACANA then searches the up and left corner from
rectangular region(0, 0) to (a, b), and right and down corner from
(c, d) to (m, n) in matrix S, respectively. This recursive process
continues until no anchor can be found.

To find the best local alignment upstream of a fixed anchor, i.e.,
the region from(0, 0) to (a, b), there is no need to recalculate the
scores in the corresponding region in matrixS. However, for the
sequence region downstream of the anchor, recalculation becomes
necessary. This score recalculation by the dynamic programming
algorithm can be costly in the recursive searching process. Fortu-
nately, this step can be avoided for most the cells in region from

(c, d) to (m, n), as they do not change during the current iteration
of local alignment. Some of these concepts have been previously
discussed by Waterman and Eggert (1987). ACANA uses a new
algorithm (described in Supplement) to efficiently identify top local
alignments within the downstream rectangular region of a fixed
anchor by recalculating only some cells in the region. The ACANA
matrix recalculation algorithm is actually able to identify top local
alignments in any rectangular region of the alignment matrixS.

Construction of Global AlignmentAfter fixing anchoring regions,
ACANA uses the Gotoh improved Needleman-Wunsch algorithm
to align the remaining sequence segments. These alignments are
connected with the anchoring regions to form a global alignment.
The default nucleotide substitution scoring matrix of ACANA is
based on the alignment-scoring scheme derived by Chiaromonte
et al. (2002), which is also used by BLASTZ, AVID and LAGAN.
The default amino acid substitution scoring matrix is BLOSUM62
from NCBI.

4 RESULTS AND DISCUSSION

Performance Evaluation
To evaluate ACANA’s performance, one would ideally apply it
to real sequences in which true alignments are known. Although
several sets of benchmark protein sequences are available for eva-
luation of alignment programs (Thompsonet al., 1999; Bahret al.,
2001; Lassmann and Sonnhammer, 2002), no good benchmark data
from real genomic sequences are currently available. Consequently,
we used a benchmark data set of simulated non-coding sequences
from Pollardet al. (2004) to evaluate the performance of ACANA.
In addition, we used data from human-mouse orthologous promoter
sequences to assess its performance indirectly.

On Simulated Sequences
In its ability to locally align functionally constrained sites, ACANA
compared favorably with DIALIGN (Morgensternet al., 1996,
1998; Morgenstern, 1999), BLASTZ (Schwartzet al., 2003), and
CHAOS (Brudnoet al., 2003a) on several measures. For exam-
ple, ACANA had the highest constraint sensitivity among these
tools for sequences of intermediate or large divergence differences.
Similarly, for global alignment, ACANA appeared to outperform
AVID, LAGAN, DIALIGN, and ClustalW (Thompsonet al., 1994).
Interestingly, the overall sensitivity of ACANA increased as the
divergence distance increased whereas the overall sensitivities of
the other tools either remained unchanged or decreased. A full
exposition of our results on simulated sequences appears in the
Supplement.

On Real Sequences
The test data set consists of 6,007 pairs of human-mouse putative
orthologous promoter sequences extracted from NCBI GenBank.
All known repetitive elements from Repbase database (ver. 8.4)
(Jurka, 1998, 2000) were masked in the sequences by Censor (ver.
4.1) (Jurka, 2000) and WU-BLAST (ver. 2.0) (Altschul and Gish,
1996). The list of human-mouse orthologs was from NCBI Homolo-
Gene database. Each promoter sequence is of length 4,500bp: 3,500
bp upstream and 1,000bp downstream of the transcription start site
as annotated in the GenBank.

Instead of directly measuring alignment accuracy, which is
impossible when true alignments are unknown, we assessed global
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Table 1. The summary statistics of the average length
(bp) of conserved regions per pairwise alignment of
6,007 pairs of human-mouse promoter sequences by 5
different alignment tools. A conserved region is defi-
ned as more than 70% identity over 100 bp stretch. N
is the number of alignments that contain at least one
conserved region. SD stands for standard deviation.

N Mean SD Min Max

ACANA 4851 907 697 50 4402
AVID 4658 753 614 51 4294
CLUSTALW 4219 893 725 48 4488
DIALIGN 4710 753 621 44 4284
LAGAN 4805 862 677 50 4353

alignment quality by the relative length of all conserved regions ali-
gned by different tools. From a biological point of view, an accurate
global alignment should correctly align evolutionarily related regi-
ons, including the syntenically conserved regions. Therefore, the
relative length of syntenically conserved regions aligned can be used
as an indirect measure for assessing quality of global alignments by
different tools.

For global alignment, we compared ACANA with AVID, Clu-
stalW, LAGAN and DIALIGN. For DIALIGN, we used the impro-
ved version — DIALIGN-2 (Morgenstern, 1999). First, each tool,
with its default parameter settings, was used to align each pair of
orthologous sequences. Second, for each pairwise global alignment,
we used VISTA (Mayoret al., 2000) to extract conserved regions
(see Supplement). Although methods used to define conserved regi-
ons are somewhat arbitrary, one of the most frequently used is based
on percentage identity over a region of fixed length (Fickett and
Wasserman, 2000; Lootset al., 2000). VISTA employs this method
with a default cutoff value of 70% identity over 100bp, a value
commonly used for human and rodent species.

ACANA not only finds the largest number of orthologous pairs of
sequences containing at least one conserved region but also the lon-
gest conserved region on average compared to the other two tools
(Tables 1 and 2). To see the differences, we randomly picked 100
orthologous pairs of sequences from the data set. For each pair,
we manually examined the three alignments by their Percent Iden-
tity Plots (PIP). In all cases, the PIP plots of alignments from the
three algorithms are similar for sequence regions with high simila-
rity, but may be different for regions with only moderate similarity.
An example is given in Figure 2.

Summary and Future Work
A challenge in comparative sequence analysis is to obtain high qua-
lity sequence alignments while minimizing computational time. In
the past two decades, significant progress has been made. The most
important achievement is the dramatic reduction in computation
time by heuristic algorithms coupled with faster computers, which
makes it possible to align genome-size sequences. Despite this pro-
gress, many challenges remain, notably the quality of alignment.
Except when applied to the smallest and simplest sequences, almost
no two current alignment algorithms regularly give the same ali-
gnment. It is very difficult, if not impossible, to reflect accurately

Table 2. The summary statistics of length differences of con-
served regions detected by 5 different alignment tools. Here
theN is the number of pairs of orthologous genes, from which
both alignment tools can find conserved regions. The p-value
were computed from a pairedt test. SD stands for standard
deviation.

Difference N Mean SD Pr > |t|

ACANA - AVID 4641 185 168 < .0001
ACANA - CLUSTALW 4190 67 213 < .0001

ACANA - DIALIGN 4699 177 167 < .0001
ACANA - LAGAN 4788 52 92 < .0001

Fig. 2. Percent Identity Plots of global alignments The promoter
sequences are of human (NM_013314) and mouse (NM_008528) ortholo-
gous genes encoding B-cell linker protein. The plots show that only ACANA
is able to detect a conserved region between positions [-3000,-2500] relative
to the transcription start site of the human gene.

evolutionary events such as point mutation, insertion, deletion,
duplication, rearrangement, etc. in a scoring function for alignment.
Nonetheless, the recent advances in alignment methodologies have
made a great impact on modern biological research.

The introduction of anchoring has made genome-wide alignment
feasible and fairly accurate. While the index or word-chaining based
approaches are very efficient, these heuristic approaches are not
guaranteed to find the near optimal local alignments as anchors,
especially for divergent sequences. The ACANA algorithm uses the
Smith-Waterman-like dynamic programming algorithm for local ali-
gnment, enabling it to identify the near optimal local alignments.
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Furthermore, ACANA uses a new strategy to select an anchoring
region from a set of significant local alignments.

Performance evaluations suggest that ACANA is an accurate and
consistent alignment tool for both local and global alignments.
Using a set of simulated benchmark dataset, we found that ACANA
has the highest constrained sensitivity in correctly aligning the
known constrained functional sites embedded in the sequences com-
pared to BLASTZ, CHAOS, and DIALIGN for local alignment and
AVID, ClustalW, DIALIGN, and LAGAN for global alignment.
ACANA performs best for sequences of moderate to large diver-
gent distances. When tested on a set of paired putative human/mouse
orthologous promoter sequences, ACANA found the largest number
of orthologs that contained at least one conserved region (over70%
identity over 100bp) compared to AVID, ClustalW, DIALIGN and
LAGAN. In addition, the average length of the conserved regions
identified by ACANA was the longest. We believe that ACANA
shows some improvement over existing tools for aligning diver-
gent sequences. We attribute the potential improvements partially
to ACANA’s recursive anchoring selection strategy.

We would like to point out that the current version of ACANA
is not capable of dealing with inversions in sequences. We think
that such capability can be easily incorporated by aligning sequence
segments in both directions in the recursive anchoring selection step.
Such work is in progress. Lastly, ACANA may be combined with
other faster local alignment tools such as CHAOS when significant
improvement in speed is needed to align genome-size sequences.

In conclusion, we believe that ACANA is a novel and accurate
alignment algorithm. Its new recursive anchoring selection strategy
may represent an improvement over existing methods. ACANA’s
ability to align conserved functional sites and its robustness to
large insertions/deletions make it particularly useful in compara-
tive genomic analysis of promoter sequences for functional element
discovery.
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